
Lead Tetra-acetate Oxidation of NN-Dimethylglycine and its Relevance to the Biosynthesis of the Pyrrolidine Ring of Nicotine

By ARNOLD A. LIEBMAN, BRADFORD P. MUNDY, MELVIN L. RUEPPEL, and HENRY RAPOPORT* (Department of Chemistry, University of California, Berkeley, California 94720)

Summary Validity of the degradation of the pyrrolidine ring of nicotine via NN-dimethylglycine hydrochloride has been confirmed since oxidation of the latter by lead tetra-acetate yields formaldehyde derived $98.7 \pm 1.1\%$ from the methylene group.

LEETE, in a recent article in this journal,¹ has criticized our procedure² for the degradation of NN-dimethylglycine hydrochloride to dimethylamine, formaldehyde, and carbon dioxide. He reports that our oxidation procedure using lead tetra-acetate, in his hands, led to formaldehyde derived from the N-methyl groups as well as from the methylene. As support, he cites other observations³⁻⁵ that formaldehyde can be produced by the oxidation of Nmethyl groups. However, these examples involve ozone^{3,4} and periodate⁵ as oxidants, not lead tetra-acetate on the amine hydrochloride according to our procedure. He concludes that this contamination from the N-methyl group would lead to high values for our reported activity at C-5' (isolated as formaldehyde) in nicotine biosynthesis with ${}^{14}CO_2$ and would account for the difference between the unsymmetrical labelling pattern found by us^2 and the symmetrical pattern found by Zielke *et al.*⁶

Apparently Leete overlooked the control experiments we presented² which established the validity of our oxidation procedure. One degradation of [2-14C]-NN-dimethylglycine

hydrochloride we reported as giving formaldehyde with nore than 99% of the initial specific activity (now No. 1, Table). The other control degradation was reported with β -1⁴C]- β -dimethylaminopropiophenone and ultimately gave ormaldehyde with 99·1% of the initial specific activity now No. 2, Table).

		TABLE		
	[¹⁴ C]-NN-Dimethylglycine, HCl ^a		Formaldehydeb	
Expt. No,	Labelled carbon	Spec. act.º	Spec. act.°	%a
$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	C-2 C-2 C-2	$1.27 imes 10^5 \ 57,670 \ 57,670$	$1.26 imes 10^5$ 57,154 57,561	$99 \cdot 2 \\ 99 \cdot 1 \\ 99 \cdot 8$
4 5	N-CH ₃ N-CH ₃	$5.54 imes 10^{6}$ $5.54 imes 10^{6}$	1.32×10^{5} 7.69×10^{4}	$2.4 \\ 1.4$

^a Prepared by reductive alkylation of glycine with formaldehyde as described for the corresponding β -alanine derivative in ref. 2 and isolated as the hydrochloride by sublimation.

^b Assayed as its dimedone derivative.

^c Specific activity in d.p.m./mmol.

^d Per cent of the original dimethylglycine activity found in the formaldehyde.

We have now performed three additional control degradations, the last two with material prepared from glycine and [14C]formaldehyde. All experiments were conducted with NN-dimethylglycine hydrochloride, free of glycine and sarcosine by automatic amino-acid analysis and pure by mass spectrometry, n.m.r., and elemental analyses. The oxidation conditions were as specified² and were kept constant throughout the reaction.

As can be seen from the Table, in all the degradations the methylene carbon maintained its integrity to the extent of $98.7 \pm 1.1\%$. The departure from 100% is practically within experimental error (1% of each count) and could have no effect on the reported² activities of nicotine at C-5'. Furthermore, this degradation procedure cannot account for the difference between the unsymmetrical² and the symmetrical labelling pattern,6 since in both cases our degradation procedure was used. We have also found symmetrical labelling patterns in some ¹⁴CO₂ biosynthesis experiments, but the factors responsible have not yet been established.

(Received, 3rd July 1972; Com. 1153.)

- ² A. A. Liebman, B. P. Mundy, and H. Rapoport, J. Amer. Chem. Soc., 1967, 89, 664.
 ³ R. N. Gupta and I. D. Spenser, Canad. J. Chem., 1971, 49, 384.
 ⁴ E. Brochmann-Hanssen, C.-C. Fu, and G. Zanati, J. Pharm. Sci., 1971, 60, 873.
 ⁵ A. R. Battersby, P. Bohler, M. H. G. Munro, and R. Ramage, Chem. Comm., 1969, 1066.
 ⁶ H. R. Zielke, R. U. Byerrum, R. M. O'Neal, L. C. Burns, and R. E. Koeppe, J. Biol. Chem., 1968, 243, 4757.

¹ E. Leete, Chem. Comm., 1971, 1524.